metabelian, supersoluble, monomial, A-group
Aliases: C32⋊4C8, C12.6S3, C6.3Dic3, C3⋊(C3⋊C8), (C3×C6).3C4, C4.2(C3⋊S3), (C3×C12).4C2, C2.(C3⋊Dic3), SmallGroup(72,13)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C32⋊4C8 |
Generators and relations for C32⋊4C8
G = < a,b,c | a3=b3=c8=1, ab=ba, cac-1=a-1, cbc-1=b-1 >
Character table of C32⋊4C8
class | 1 | 2 | 3A | 3B | 3C | 3D | 4A | 4B | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | i | -i | i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -i | i | -i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 1 | -1 | 1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -1 | ζ83 | ζ8 | ζ87 | ζ85 | -i | -i | -i | -i | i | i | i | i | linear of order 8 |
ρ6 | 1 | -1 | 1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | -1 | ζ85 | ζ87 | ζ8 | ζ83 | i | i | i | i | -i | -i | -i | -i | linear of order 8 |
ρ7 | 1 | -1 | 1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -1 | ζ87 | ζ85 | ζ83 | ζ8 | -i | -i | -i | -i | i | i | i | i | linear of order 8 |
ρ8 | 1 | -1 | 1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | -1 | ζ8 | ζ83 | ζ85 | ζ87 | i | i | i | i | -i | -i | -i | -i | linear of order 8 |
ρ9 | 2 | 2 | -1 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | -1 | -1 | 2 | -1 | -2 | -2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -2 | 1 | 1 | -2 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ14 | 2 | 2 | 2 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ15 | 2 | 2 | -1 | -1 | -1 | 2 | -2 | -2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | 1 | 1 | 1 | -2 | symplectic lifted from Dic3, Schur index 2 |
ρ16 | 2 | 2 | -1 | 2 | -1 | -1 | -2 | -2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ17 | 2 | -2 | 2 | -1 | -1 | -1 | 2i | -2i | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | -i | 2i | -i | -i | -2i | i | i | i | complex lifted from C3⋊C8 |
ρ18 | 2 | -2 | -1 | -1 | 2 | -1 | -2i | 2i | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | i | i | i | -2i | -i | -i | 2i | -i | complex lifted from C3⋊C8 |
ρ19 | 2 | -2 | -1 | 2 | -1 | -1 | 2i | -2i | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -i | -i | 2i | -i | i | -2i | i | i | complex lifted from C3⋊C8 |
ρ20 | 2 | -2 | -1 | 2 | -1 | -1 | -2i | 2i | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | i | i | -2i | i | -i | 2i | -i | -i | complex lifted from C3⋊C8 |
ρ21 | 2 | -2 | -1 | -1 | 2 | -1 | 2i | -2i | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -i | -i | -i | 2i | i | i | -2i | i | complex lifted from C3⋊C8 |
ρ22 | 2 | -2 | 2 | -1 | -1 | -1 | -2i | 2i | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | i | -2i | i | i | 2i | -i | -i | -i | complex lifted from C3⋊C8 |
ρ23 | 2 | -2 | -1 | -1 | -1 | 2 | -2i | 2i | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | -2i | i | i | i | -i | -i | -i | 2i | complex lifted from C3⋊C8 |
ρ24 | 2 | -2 | -1 | -1 | -1 | 2 | 2i | -2i | 1 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 2i | -i | -i | -i | i | i | i | -2i | complex lifted from C3⋊C8 |
(1 68 11)(2 12 69)(3 70 13)(4 14 71)(5 72 15)(6 16 65)(7 66 9)(8 10 67)(17 30 43)(18 44 31)(19 32 45)(20 46 25)(21 26 47)(22 48 27)(23 28 41)(24 42 29)(33 56 62)(34 63 49)(35 50 64)(36 57 51)(37 52 58)(38 59 53)(39 54 60)(40 61 55)
(1 34 31)(2 32 35)(3 36 25)(4 26 37)(5 38 27)(6 28 39)(7 40 29)(8 30 33)(9 55 42)(10 43 56)(11 49 44)(12 45 50)(13 51 46)(14 47 52)(15 53 48)(16 41 54)(17 62 67)(18 68 63)(19 64 69)(20 70 57)(21 58 71)(22 72 59)(23 60 65)(24 66 61)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,68,11)(2,12,69)(3,70,13)(4,14,71)(5,72,15)(6,16,65)(7,66,9)(8,10,67)(17,30,43)(18,44,31)(19,32,45)(20,46,25)(21,26,47)(22,48,27)(23,28,41)(24,42,29)(33,56,62)(34,63,49)(35,50,64)(36,57,51)(37,52,58)(38,59,53)(39,54,60)(40,61,55), (1,34,31)(2,32,35)(3,36,25)(4,26,37)(5,38,27)(6,28,39)(7,40,29)(8,30,33)(9,55,42)(10,43,56)(11,49,44)(12,45,50)(13,51,46)(14,47,52)(15,53,48)(16,41,54)(17,62,67)(18,68,63)(19,64,69)(20,70,57)(21,58,71)(22,72,59)(23,60,65)(24,66,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;
G:=Group( (1,68,11)(2,12,69)(3,70,13)(4,14,71)(5,72,15)(6,16,65)(7,66,9)(8,10,67)(17,30,43)(18,44,31)(19,32,45)(20,46,25)(21,26,47)(22,48,27)(23,28,41)(24,42,29)(33,56,62)(34,63,49)(35,50,64)(36,57,51)(37,52,58)(38,59,53)(39,54,60)(40,61,55), (1,34,31)(2,32,35)(3,36,25)(4,26,37)(5,38,27)(6,28,39)(7,40,29)(8,30,33)(9,55,42)(10,43,56)(11,49,44)(12,45,50)(13,51,46)(14,47,52)(15,53,48)(16,41,54)(17,62,67)(18,68,63)(19,64,69)(20,70,57)(21,58,71)(22,72,59)(23,60,65)(24,66,61), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,68,11),(2,12,69),(3,70,13),(4,14,71),(5,72,15),(6,16,65),(7,66,9),(8,10,67),(17,30,43),(18,44,31),(19,32,45),(20,46,25),(21,26,47),(22,48,27),(23,28,41),(24,42,29),(33,56,62),(34,63,49),(35,50,64),(36,57,51),(37,52,58),(38,59,53),(39,54,60),(40,61,55)], [(1,34,31),(2,32,35),(3,36,25),(4,26,37),(5,38,27),(6,28,39),(7,40,29),(8,30,33),(9,55,42),(10,43,56),(11,49,44),(12,45,50),(13,51,46),(14,47,52),(15,53,48),(16,41,54),(17,62,67),(18,68,63),(19,64,69),(20,70,57),(21,58,71),(22,72,59),(23,60,65),(24,66,61)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])
C32⋊4C8 is a maximal subgroup of
C32⋊2C16 S3×C3⋊C8 D6.Dic3 C32⋊2D8 Dic6⋊S3 C32⋊2Q16 C8×C3⋊S3 C24⋊S3 C12.58D6 C32⋊7D8 C32⋊9SD16 C32⋊11SD16 C32⋊7Q16 He3⋊3C8 C36.S3 C33⋊7C8 C12.12S4 C3⋊U2(𝔽3) C60.S3 C30.Dic3
C32⋊4C8 is a maximal quotient of
C24.S3 C36.S3 He3⋊4C8 C33⋊7C8 C12.12S4 C60.S3 C30.Dic3
Matrix representation of C32⋊4C8 ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 72 | 71 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
63 | 0 | 0 | 0 | 0 |
0 | 60 | 62 | 0 | 0 |
0 | 2 | 13 | 0 | 0 |
0 | 0 | 0 | 49 | 34 |
0 | 0 | 0 | 11 | 24 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,0,72,0,0,0,1,72,0,0,0,0,0,1,72,0,0,0,3,71],[1,0,0,0,0,0,0,72,0,0,0,1,72,0,0,0,0,0,1,0,0,0,0,0,1],[63,0,0,0,0,0,60,2,0,0,0,62,13,0,0,0,0,0,49,11,0,0,0,34,24] >;
C32⋊4C8 in GAP, Magma, Sage, TeX
C_3^2\rtimes_4C_8
% in TeX
G:=Group("C3^2:4C8");
// GroupNames label
G:=SmallGroup(72,13);
// by ID
G=gap.SmallGroup(72,13);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-3,10,26,323,1204]);
// Polycyclic
G:=Group<a,b,c|a^3=b^3=c^8=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊4C8 in TeX
Character table of C32⋊4C8 in TeX